

By O.P. GUPTA
 MULTIPLE CHOICE TYPE QUESTIONS

For CBSE 2025 Exams - Mathematics (041) - Class 12
Topics: Applications Of Derivatives

Select the correct option in the followings. Each question carries 1 mark.

Q01. An angle $\theta, 0<\theta<\frac{\pi}{2}$ which increases twice as fast as its sine, is
(a) $\frac{\pi}{3}$
(b) $\frac{\pi}{6}$
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{4}$

Q02. Exponential function, $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}}$ is
(a) always increasing
(b) always decreasing
(c) both increasing and decreasing
(d) neither increasing nor decreasing

Q03. The function $\cos 3 \mathrm{x}$ is
(a) increasing on $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
(b) decreasing on $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$
(c) decreasing on $\left(0, \frac{\pi}{3}\right)$
(d) Both (a) and (c)

Q04. $\mathrm{f}(\mathrm{x})=\frac{\mathrm{e}^{2 \mathrm{x}}-1}{\mathrm{e}^{2 \mathrm{x}}+1}$ is
(a) always increasing
(b) always decreasing
(c) both increasing and decreasing
(d) None of these

Q05. The rate of change of the surface area of the sphere of radius r when the radius is increasing at the rate of $2 \mathrm{~cm} / \mathrm{s}$ is proportional to
(a) $\frac{1}{\mathrm{r}^{2}}$
(b) $\frac{1}{\mathrm{r}}$
(c) r
(d) r^{2}

Q06. Maximum value of $\sin \mathrm{x}+\sqrt{3} \cos \mathrm{x}$ is
(a) 1
(b) 2
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$

Q07. If the rate of decrease of $\frac{x^{2}}{2}-2 x+5$ is twice the rate of decrease of $2 x$, then x is equal to
(a) 2
(b) 4
(c) 6
(d) 8

Q 08 . The function $\mathrm{x}^{2}-4 \mathrm{x}, \mathrm{x} \in[0,4]$ attains minimum value at
(a) $\mathrm{x}=0$
(b) $x=2$
(c) $x=1$
(d) $x=4$

Q09. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. The rate at which the area increases, when side is 10 cm is
(a) $10 \mathrm{~cm}^{2} / \mathrm{s}$
(b) $\sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$
(c) $10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$
(d) $\frac{10}{3} \mathrm{~cm}^{2} / \mathrm{s}$

Q10. Let the function $f: R \rightarrow R$ be defined by $f(x)=2 x+\cos x$, then f
(a) has a minimum at $\mathrm{x}=\pi$
(b) has a maximum at $\mathrm{x}=0$
(c) is a decreasing function
(d) is an increasing function

Q11. $\mathrm{y}=\mathrm{x}(\mathrm{x}-3)^{2}$ decreases for the values of x given by
(a) $1<x<3$
(b) $x<0$
(c) $x>0$
(d) $0<x<\frac{3}{2}$

Q12. Which of the following functions is decreasing on $\left(0, \frac{\pi}{2}\right)$?
(a) $\sin 2 x$
(b) $\tan x$
(c) $\cos x$
(d) $\cos 3 x$

Q13. The function $f(x)=\tan x-x$
(a) always increases
(b) always decreases
(c) never increases
(d) sometimes increases and sometimes decreases

Q14. If x is real, the minimum value of $x^{2}-8 x+17$ is
(a) -1
(b) 0
(c) 1
(d) 2

Q15. Maximum slope of the curve $y=-x^{3}+3 x^{2}+9 x-27$ is
(a) 0
(b) 12
(c) 16
(d) 32

Q16. $\mathrm{f}(\mathrm{x})=\mathrm{x}^{\mathrm{x}}$ has a stationary point at
(a) $\mathrm{x}=\mathrm{e}$
(b) $\mathrm{x}=\mathrm{e}^{-1}$
(c) $\mathrm{x}=1$
(d) $x=\sqrt{e}$

Q17. For what value of $\mathrm{a}, \mathrm{f}(\mathrm{x})=\mathrm{a}(\mathrm{x}+\sin \mathrm{x})$ is an increasing function?
(a) $\mathrm{a} \leq 0$
(b) $\mathrm{a} \in(0, \infty)$
(c) $\mathrm{a} \in[0, \infty)$
(d) $\mathrm{a} \in(-\infty, \infty)$

Q18. The maximum value of $f(x)=\sin (\sin x) \forall x \in R$ is
(a) $\sin (1)$
(b) $-\sin (1)$
(c) $[-\sin (1), \sin (1)]$
(d) 1

Q19. Maximum and minimum values of $f(x)=x^{2}+1$ in $x \in(-2,2)$ are, respectively
(a) 5,0
(b) Does not exist, 0
(c) 5, Does not exist
(d) Does not exist, 1

Q20. The function $f(x)=|x|-|x-1|$ is strictly increasing when
(a) $\mathrm{x}<0$
(b) $\mathrm{x}>1$
(c) $\mathrm{x}<1$
(d) $0<x<1$

Q21. The function $\mathrm{f}(\mathrm{x})=\mathrm{x}+\cot ^{-1} \mathrm{x}$ is increasing in the interval
(a) $(-\infty, \infty)$
(b) $(-1, \infty)$
(c) $(0, \infty)$
(d) $(1, \infty)$

Q22. The rate of change of the volume of sphere with respect to its surface area, when its radius is 2 units, is
(a) 1
(b) 2
(c) 3
(d) None of these

Q23. The function $\mathrm{f}(\mathrm{x})=\tan ^{-1} \mathrm{x}-\log \mathrm{x}$ decreases in
(a) $(-\infty, 0)$
(b) $\left(-\infty, \frac{1}{2}\right)$
(c) $(0, \infty)$
(d) $\left(\frac{1}{2}, \infty\right)$

Q24. The function $f(x)=\frac{\mathrm{x}}{2}+\frac{2}{\mathrm{x}}$ has a local minimum at
(a) $x=-2$
(b) $x=0$
(c) $x=-3$
(d) $x=2$

Q25. If $\mathrm{f}(\mathrm{x})=\frac{1}{4 \mathrm{x}^{2}+2 \mathrm{x}+1}$, then its maximum value is
(a) $\frac{2}{3}$
(b) $\frac{3}{4}$
(c) 1
(d) $\frac{4}{3}$

Q26. The maximum value of $4 \sin ^{2} x+3 \cos ^{2} x$ is
(a) 3
(b) 4
(c) 5
(d) 7

Q27. The point of inflection for the curve $y=x^{5 / 3}$ is
(a) $(0,0)$
(b) $(0,1)$
(c) $(1,0)$
(d) Does not exist

Question numbers 28 to $\mathbf{3 0}$ are Assertion and Reason based questions. Two statements are given, one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer from the codes (a), (b), (c) and (d) as given below.
(a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
(b) Both Assertion (A) and Reason (R) are true and Reason (R) is not the correct explanation of Assertion (A).
(c) Assertion (A) is true but Reason (R) is false.
(d) Assertion (A) is false but Reason (R) is true.

Q28. Assertion (A) : If $f(x)=\log x$, then $f(x)$ is always increasing in $x \in(0, \infty)$.
Reason (R): A function $f(x)$ always increases in the interval $x \in(a, b)$, if $f^{\prime}(x)>0$ in the interval $x \in(a, b)$.

Q29. Assertion (A) : The maximum value of $x y$, if $x+2 y=8$, is 8 .
Reason (R): Minimum value of $f(x)$, if $f(x)=\sin x$ in $x \in[0,2 \pi]$ is 0 .
Q30. Assertion (A) : The least value of the function $f(x)=2 x+\frac{8}{x}$, $($ where $x>0)$ is 4 .
Reason (R): For a well defined function $y=f(x), x=c$ is called the point of local minima if $\mathrm{f}^{\prime}(\mathrm{c})=0$ and $\mathrm{f}^{\prime \prime}(\mathrm{c})>0$.

(1) Check LAST PAGE FOR THE QR-CODES to view the DETAILED SOLUTIONS of this Test.

(i) SHARE THIS FILE with all other math scholars.

GET BULK-ORDERS @ THE DISCOUNTED PRICES FOR SCHOOLS, TUITIONS \& COACHING INSTITUTES

Available
amazon also on

Flipkart

MOST REPUTED Order your copy now an Discounted WhatsApp @ +91-9650350480

We have released Set of 2 Books for CBSE XII Maths (041) useful for session 2024-25.

1. MATHMISSION FOR XII - COMPLETE THEORY \& EXAMPLES ■ SUBJECTIVE TYPE QUESTIONS ■ COMPETENCY FOCUSED QUESTIONS

* Multiple Choice Questions
* Assertion-Reason Questions
\& Case-Study Questions
\& Passage-Based Questions V H.O.T.S. Questions from recent exams.

2. SOLUTIONS OF MATHMISSION『 Step-by-step Detailed Solutions
(For all Exercises of MATHMISSION)

SOLUTIONS

OF MATHMISSION
D.P. GUPTA

This document contains MCQs for Mathematics (041) of class XII.

- Answers / Solutions is available on YouTube channel - Mathematicia By O.P. Gupta

You can share this document with other students!
\$ With a lot of Blessings!

O.P. GUPTA

Author \& Math Mentor
Indira Award Winner
1 The O.P. Gupta Advanced Math Classes @ Think Academy, Near Dhansa Bus Stand Metro Station Gate No.3, Najafgarh, Delhi
© Telegram / WhatsApp : +919650350480

Exclusive coaching for Maths (041) By O.P. GUPTA \square CBSE XII $\boxed{\square}$ CBSE XI ■ CUET
■ JEE - MAIN
■ NDA

- YouTube.com/@theopgupta

Feel Safe to Share this Document with other math scholars

CLICK NOW

To get FREE PDF Materials, join WhatsApp Teachers Group by Clicking on the Logo

If you are a Student, then you may join our Students Group

You can add our WhatsApp no. +919650350480 to your Groups also

Many Direct Questions from our Books have been asked in the recent CBSE Exams

Click on Book cover to buy

MATHMISSION FOR XII ${ }^{204423}$

(1) You may Share this PDF File with other Students \& Teachers.
(1) You may like to add our WhatsApp no. 9650350480 to your groups to get Regular updates.
Dear educators,If you wish to get MS Word file of this Document,please connect on WhatsApp @ $\mathbf{+ 9 1 9 6 5 0 3 5 0 4 8 0}$ viaMessage only. You may get the MS Word file as aPremium Service. However PDF files are FREEfor all the math scholars.
Thanks

